
## PALS Algorithms

- 1. PALS Systematic Approach Algorithm
- 2. Management of Shock Flowchart
- 3. Recognition of Shock Flowchart
- 4. Management of Respiratory Emergencies Flowchart
- 5. Recognition of Respiratory Problems Flowchart
- 6. Pediatric Cardiac Arrest Algorithm
- 7. Pediatric Bradycardia With a Pulse and Poor Perfusion Algorithm
- 8. Pediatric Tachycardia With a Pulse and Adequate Perfusion Algorithm
- Pediatric Tachycardia With a Pulse and Poor Perfusion Algorithm
- 10. Pediatric Postresuscitation Care

#### **PALS Systematic Approach Algorithm**

The PALS Systematic Approach Algorithm outlines the approach to caring for a critically ill or injured child.





## **Management of Shock Flowchart**



#### Management of Shock Flowchart

Oxygen

IV/IO access

Pulse oximetry

BLS as indicated

ECG monitor

Point-of-care glucose testing

#### **Hypovolemic Shock**

**Specific Management for Selected Conditions** 

| Nonhemorrhagic                                                                    | Hemorrhagic                                                                                                                                 |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>20 mL/kg NS/LR bolus, repeat as needed</li><li>Consider colloid</li></ul> | <ul> <li>Control external bleeding</li> <li>20 mL/kg NS/LR bolus, repeat 2 or 3× as needed</li> <li>Transfuse PRBCs as indicated</li> </ul> |

#### **Distributive Shock**

**Specific Management for Selected Conditions** 

| Septic                               | Anaphylactic                                                                                                                                                                           | Neurogenic                                                             |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Management Algorithm: • Septic Shock | <ul> <li>IM epinephrine (or autoinjector)</li> <li>Fluid boluses (20 mL/kg NS/LR)</li> <li>Albuterol</li> <li>Antihistamines, corticosteroids</li> <li>Epinephrine infusion</li> </ul> | <ul><li>20 mL/kg NS/LR bolus, repeat PRN</li><li>Vasopressor</li></ul> |

#### **Cardiogenic Shock**

**Specific Management for Selected Conditions** 

| Bradyarrhythmia/Tachyarrhythmia | Other (eg, CHD, Myocarditis,<br>Cardiomyopathy, Poisoning) |
|---------------------------------|------------------------------------------------------------|
| Management Algorithms:          | • 5 to 10 mL/kg NS/LR bolus, repeat PRN                    |
| Bradycardia                     | Vasoactive infusion                                        |
| Tachycardia With Poor Perfusion | Consider expert consultation                               |

#### **Obstructive Shock**

**Specific Management for Selected Conditions** 

| Ductal-Dependent (LV Outflow Obstruction)                         | Tension Pneumothorax                       | Cardiac<br>Tamponade                                              | Pulmonary<br>Embolism                                                                                                             |
|-------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Prostaglandin E₁</li> <li>Expert consultation</li> </ul> | Needle decompression     Tube thoracostomy | <ul><li>Pericardiocentesis</li><li>20 mL/kg NS/LR bolus</li></ul> | <ul> <li>20 mL/kg NS/LR bolus, repeat PRN</li> <li>Consider thrombolytics, anticoagulants</li> <li>Expert consultation</li> </ul> |

## **Recognition of Shock Flowchart**



|   | Clinical Signs           | Hypovolemic<br>Shock                          | Distributive<br>Shock  | Cardiogenic<br>Shock | Obstructive<br>Shock |
|---|--------------------------|-----------------------------------------------|------------------------|----------------------|----------------------|
| A | Patency                  | Airway open and maintainable/not maintainable |                        |                      |                      |
|   | Respiratory rate         | Increased                                     |                        |                      |                      |
| В | Respiratory effort       | Normal to increased                           |                        | Labored              |                      |
| Б | Breath sounds            | Normal                                        | Normal<br>(± crackles) | Crackles, grunting   |                      |
|   | Systolic blood pressure  | Compensated Shock — Hypotensive Shock         |                        |                      |                      |
|   | Pulse pressure           | Narrow                                        | Variable               | Nar                  | row                  |
|   | Heart rate               | Increased                                     |                        |                      |                      |
| С | Peripheral pulse quality | Weak                                          | Bounding or weak       | Weak                 |                      |
|   | Skin                     | Pale, cool                                    | Warm or cool           | Pale                 | , cool               |
|   | Capillary refill         | Delayed                                       | Variable               | Dela                 | ayed                 |
|   | Urine output             | Decreased                                     |                        |                      |                      |
| D | Level of consciousness   | Irritable early<br>Lethargic late             |                        |                      |                      |
| E | Temperature              | Variable                                      |                        |                      |                      |

<sup>© 2011</sup> American Heart Association

## **Management of Respiratory Emergencies Flowchart**



### Management of Respiratory Emergencies Flowchart

- Airway positioning
- Suction as needed
- Oxygen

- Pulse oximetry
- ECG monitor (as indicated)
- BLS as indicated

#### **Upper Airway Obstruction**

**Specific Management for Selected Conditions** 

| Croup                                                           | Anaphylaxis                                                                                                         | Aspiration Foreign Body                                                    |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| <ul><li>Nebulized epinephrine</li><li>Corticosteroids</li></ul> | <ul><li>IM epinephrine (or autoinjector)</li><li>Albuterol</li><li>Antihistamines</li><li>Corticosteroids</li></ul> | <ul><li>Allow position of comfort</li><li>Specialty consultation</li></ul> |

#### **Lower Airway Obstruction**

**Specific Management for Selected Conditions** 

| Bronchiolitis                             | Asthma                                                               |
|-------------------------------------------|----------------------------------------------------------------------|
| Nasal suctioning     Bronchodilator trial | <ul> <li>Albuterol ± ipratropium</li> <li>Corticosteroids</li> </ul> |
| 5 Biolichodilator thai                    | Subcutaneous epinephrine                                             |
|                                           | Magnesium sulfate                                                    |
|                                           | Terbutaline                                                          |

#### **Lung Tissue Disease**

**Specific Management for Selected Conditions** 

| Pneumonia/Pneumonitis Infectious Chemical Aspiration | Pulmonary Edema Cardiogenic or Noncardiogenic (ARDS)                                                                                                   |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Albuterol     Antibiotics (as indicated)             | <ul> <li>Consider noninvasive or invasive ventilatory support<br/>with PEEP</li> <li>Consider vasoactive support</li> <li>Consider diuretic</li> </ul> |  |

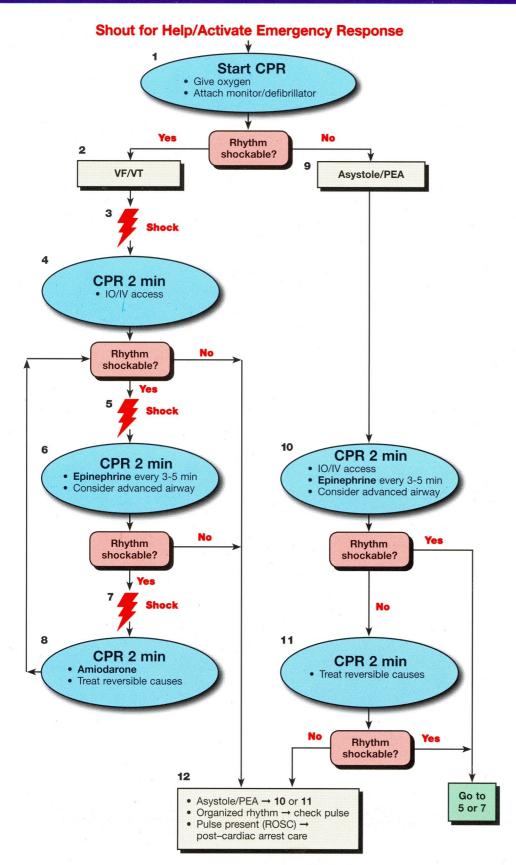
#### Disordered Control of Breathing

**Specific Management for Selected Conditions** 

| Increased ICP                         | Poisoning/Overdose                                                       | Neuromuscular Disease                                    |
|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|
| Avoid hypoxemia     Avoid hypercarbia | <ul><li>Antidote (if available)</li><li>Contact poison control</li></ul> | Consider noninvasive     or invasive ventilatory support |
| Avoid hyperthermia                    |                                                                          |                                                          |

#### **Recognition of Respiratory Problems Flowchart**




#### **Pediatric Advanced Life Support Signs of Respiratory Problems** Lower **Disordered Upper Airway Lung Tissue** Control of **Clinical Signs** Airway **Obstruction** Disease **Breathing** Obstruction Airway open and maintainable/not maintainable **Patency** Respiratory Increased Variable Rate/Effort Stridor (typically Wheezing Grunting **Breath Sounds** inspiratory) (typically expiratory) Crackles B Normal Barking cough Prolonged expiratory Decreased breath Hoarseness phase sounds Decreased Variable **Air Movement** Tachycardia (early) Bradycardia (late) **Heart Rate** Pallor, cool skin (early) Cyanosis (late) Skin Anxiety, agitation (early) Level of D Consciousness Lethargy, unresponsiveness (late) Variable **Temperature Pediatric Advanced Life Support Identification of Respiratory Problems by Severity** Respiratory Respiratory **Failure Distress** Not maintainable Open and maintainable Bradypnea to apnea Tachypnea [ Work of breathing (nasal flaring/retractions) В Decreased effort Increased effort **Apnea** Poor to absent air movement Good air movement **Bradycardia** Tachycardia C Pallor Lethargy to unresponsiveness Anxiety, agitation D Variable temperature

## Pediatric Cardiac Arrest Algorithm



DEDICATED TO THE HEALTH OF ALL CHILDREN®

#### **Pediatric Advanced Life Support**



#### Doses/Details

#### **CPR Quality**

- Push hard (≥¹/₃ of anteriorposterior diameter of chest) and fast (at least 100/min) and allow complete chest recoil
- Minimize interruptions in compressions
- Avoid excessive ventilation
- Rotate compressor every 2 minutes
- If no advanced airway, 15:2 compressionventilation ratio. If advanced airway, 8-10 breaths per minute with continuous chest compressions

## Shock Energy for Defibrillation

First shock 2 J/kg, second shock 4 J/kg, subsequent shocks ≥4 J/kg, maximum 10 J/kg or adult dose.

#### **Drug Therapy**

- Epinephrine IO/IV Dose: 0.01 mg/kg (0.1 mL/kg of 1:10 000 concentration). Repeat every 3-5 minutes. If no IO/IV access, may give endotracheal dose: 0.1 mg/kg (0.1 mL/kg of 1:1000 concentration).
- Amiodarone IO/IV Dose: 5 mg/kg bolus during cardiac arrest. May repeat up to 2 times for refractory VF/pulseless VT.

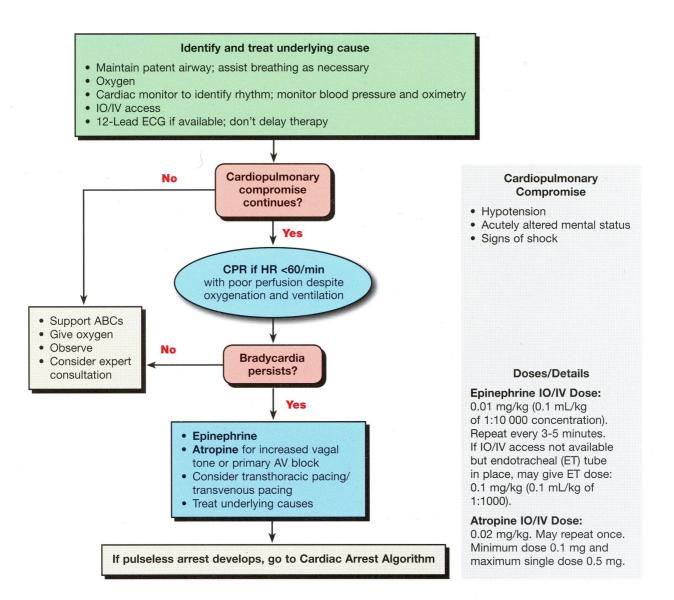
#### **Advanced Airway**

- Endotracheal intubation or supraglottic advanced airway
- Waveform capnography or capnometry to confirm and monitor ET tube placement
- Once advanced airway in place give 1 breath every 6-8 seconds (8-10 breaths per minute)

## Return of Spontaneous , Circulation (ROSC)

- Pulse and blood pressure
- Spontaneous arterial pressure waves with intra-arterial monitoring

#### **Reversible Causes**


- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypoglycemia
- Hypo-/hyperkalemia
- **H**ypothermia
- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

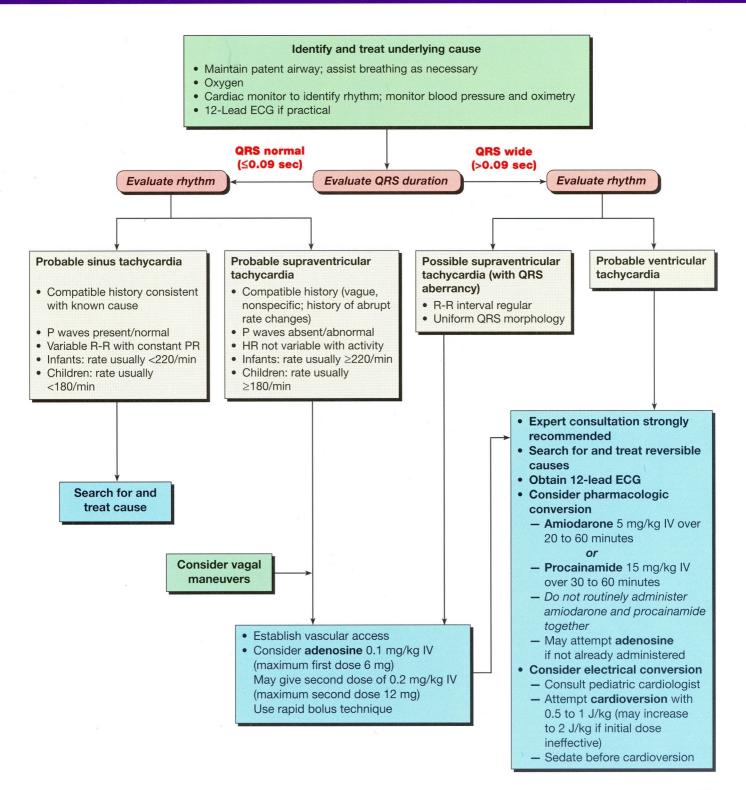


## Pediatric Bradycardia With a Pulse and Poor Perfusion Algorithm



#### **Pediatric Advanced Life Support**



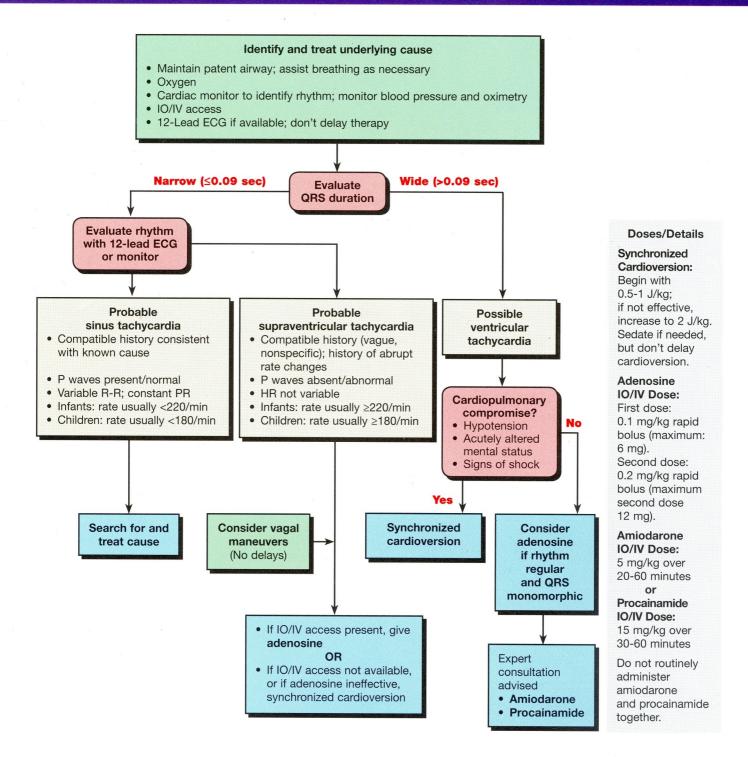

## Pediatric Tachycardia With a Pulse and Adequate Perfusion Algorithm





DEDICATED TO THE HEALTH OF ALL CHILDREN

#### **Pediatric Advanced Life Support**




# Pediatric Tachycardia With a Pulse and Poor Perfusion Algorithm





#### **Pediatric Advanced Life Support**



# Pediatric Postresuscitation Care



#### **Pediatric Advanced Life Support**

#### **Management of Shock After ROSC**

#### **Optimize Ventilation and Oxygenation**

- Titrate Fio<sub>2</sub> to maintain oxyhemoglobin saturation 94%-99%; if possible, wean Fio<sub>2</sub> if saturation is 100%
- Consider advanced airway placement and waveform capnography

#### Assess for and Treat Persistent Shock

- Identify, treat contributing factors.\*
- Consider 20 mL/kg IV/IO boluses of isotonic crystalloid. Consider smaller boluses (eg, 10 mL/kg) if poor cardiac function suspected.
- Consider the need for inotropic and/or vasopressor support for fluid-refractory shock.

#### \*Possible Contributing Factors

**H**ypovolemia

**H**ypoxia

Hydrogen ion (acidosis)

**H**ypoglycemia

Hypo-/hyperkalemia

**H**ypothermia

Tension pneumothorax

Tamponade, cardiac

**T**oxins

Thrombosis, pulmonary

Thrombosis, coronary

**T**rauma

#### **Hypotensive Shock**

- Epinephrine
- Dopamine
- Norepinephrine

#### Normotensive Shock

- Dobutamine
- Dopamine
- Epinephrine
- Milrinone
- · Monitor for and treat agitation and seizures
- · Monitor for and treat hypoglycemia
- · Assess blood gas, serum electrolytes, calcium
- If patient remains comatose after resuscitation from cardiac arrest, consider therapeutic hypothermia (32°C-34°C)
- Consider consultation and patient transport to tertiary care center

## **Estimation of Maintenance Fluid Requirements**

• Infants <10 kg: 4 mL/kg per hour

Example: For an 8-kg infant, estimated maintenance fluid rate

- = 4 mL/kg per hour × 8 kg
- = 32 mL per hour
- Children 10-20 kg: 4 mL/kg per hour for the first 10 kg + 2 mL/kg per hour for each kg above 10 kg

Example: For a 15-kg child, estimated maintenance fluid rate

- =  $(4 \text{ mL/kg per hour} \times 10 \text{ kg})$
- + (2 mL/kg per hour × 5 kg)
- = 40 mL/hour + 10 mL/hour
- = 50 mL/hour
- Children >20 kg: 4 mL/kg per hour for the first 10 kg + 2 mL/kg per hour for kg 11-20 + 1 mL/kg per hour for each kg above 20 kg.

Example: For a 28-kg child, estimated maintenance fluid rate

- =  $(4 \text{ mL/kg per hour} \times 10 \text{ kg})$ 
  - +  $(2 \text{ mL/kg per hour} \times 10 \text{ kg})$
  - + (1 mL/kg per hour × 8 kg)
- = 40 mL per hour + 20 mL per hour
  - +8 mL per hour
- = 68 mL per hour

Following initial stabilization, adjust the rate and composition of intravenous fluids based on the patient's clinical condition and state of hydration. In general, provide a continuous infusion of a dextrose-containing solution for infants. Avoid hypotonic solutions in critically ill children; for most patients use isotonic fluid such as normal saline (0.9% NaCl) or lactated Ringer's solution with or without dextrose, based on the child's clinical status.